LF(M)

High Viscosity Filter Assemblies

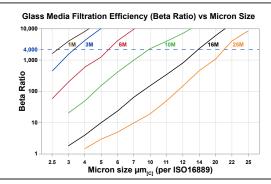
Low pressure filter assemblies optimized for high flow hydraulic, high viscosity lube and heavily contaminated fuel applications.

Max Operating Pressure: 150 psi (10 bar) Available options up to 1000 psi (68.9 bar)

hyprofiltration.com/

Filtration starts with the filter.

The oversized coreless filter element in every LF delivers lower ISO Codes over a long element lifespan to ensure low disposal impact, simultaneously reducing your environmental footprint and your bottom line. To top it off, select elements come standard with an integral zero-leak bypass so with every filter change you get a new bypass along with peace of mind.



Built for industrial use.

Constructed from heavy duty carbon steel (standard) or the optional 304 or 316 stainless steel, the LF filter housings are designed to excel in even the toughest industrial conditions. Multiround units go even further to provide increased capacity whether you're operating with incredibly high viscosity oils, extreme flow rates or need extended service intervals.

Element configuration & media options.

With media options down to $\beta3_{\text{[C]}} > 4000$, insoluble varnish removal and water absorbing options, you get the perfect element for your application, every time. Element configurations include Hy-Pro HP106 and HP107 coreless style elements with integral, zero-leak bypass valves. For those plants using 8314 style industry standard elements, the HP8314 offers an improved bypass valve design.

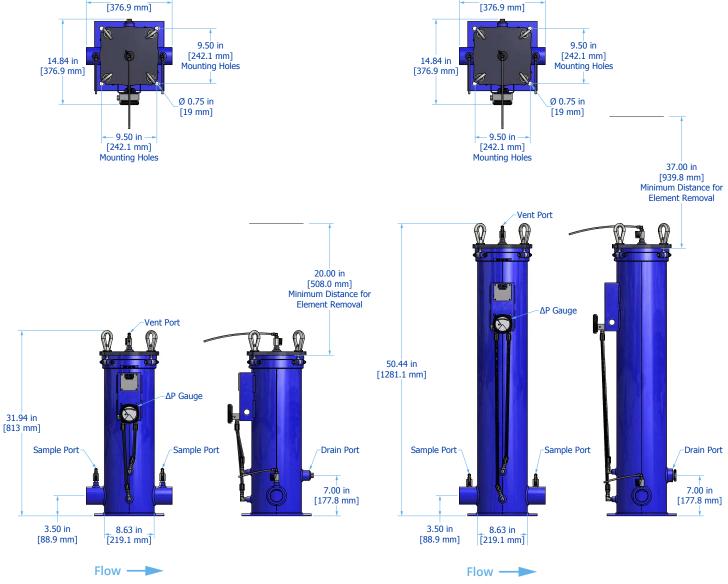
Setting the new standard.

Sampling and condition monitoring are no longer optional, they're a necessity. That's why every LF comes standard with sample ports and green to red true ΔP gages that indicate exact element condition at all times. With access to accurate system cleanliness conditions, you'll know exactly how well your filtration is performing.

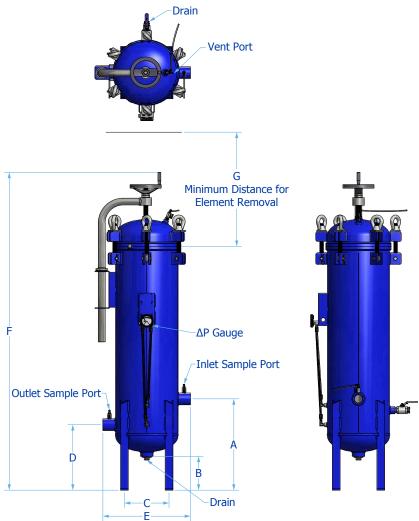
Minimize the mess.

Top loading filter housings minimize the mess from element services and changes. And with the easy open swing bolt lid design, you'll be back to filtering your fluids without having to search for all those lost parts.

Seamlessly integrated into your systems.


Multiple connection options and port customization provide the flexibility to integrate LF directly into existing re-circulating or auxiliary side loop and dispensing lines to improve fluid cleanliness and optimize existing assets. Get filtration exactly where you need it without extra expense of installing new plumbing and electrical.

LF Installation Drawings


LF (L18) Installation Drawing

14.84 in [376.9 mm] 9.50 in [242.1 mm] 14.84 in Mounting Holes [376.9 mm]

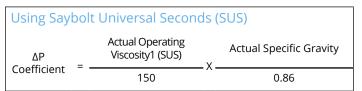
LF (L36) Installation Drawing 14.84 in

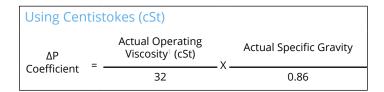
LFM Installation Drawings

	,										
Series	Number of	Port	Vessel	Α	В	C	D	E	F	G	Weight
	Elements	Size	Diameter								
LFM	3	2	16.0 in	19.1 in	8.4 in	10.4 in	12.4 in	29.0 in	74.0 in	37.0 in	337.0 lb
			40.6 cm	48.6 cm	21.3 cm	26.4 cm	31.4 cm	73.7 cm	187.9 cm	94.0 cm	153.0 kg
		3	16.0 in	20.1 in	8.4 in	10.4 in	12.4 in	29.0 in	74.0 in	37.0 in	357.0 lb
			40.6 cm	51.1 cm	21.3 cm	26.4 cm	31.4 cm	73.7 cm	187.9 cm	94.0 cm	162.0 kg
		4	16.0 in	22.6 in	8.4 in	10.4 in	12.4 in	29.0 in	74.0 in	37.0 in	367.0 lb
			40.6 cm	57.5 cm	21.3 cm	26.4 cm	31.4 cm	73.7 cm	187.9 cm	94.0 cm	167.0 kg
	4	2	18.0 in	19.1 in	7.9 in	12.0 in	12.4 in	31.0 in	79.0 in	37.0 in	422.0 lb
			45.7 cm	48.6 cm	20.1 cm	30.5 cm	31.4 cm	78.7 cm	200.6 cm	94.0 cm	192.0 kg
		3	18.0 in	20.1 in	7.9 in	12.0 in	12.4 in	31.0 in	79.0 in	37.0 in	442.0 lb
			45.7 cm	51.1 cm	20.1 cm	30.5 cm	31.4 cm	78.7 cm	200.6 cm	94.0 cm	201.0 kg
		4	18.0 in	22.6 in	7.9 in	12.0 in	12.4 in	31.0 in	79.0 in	37.0 in	453.0 lb
			45.7 cm	57.5 cm	20.1 cm	30.5 cm	31.4 cm	78.7 cm	200.6 cm	94.0 cm	206.0 kg
	9	3	24.0 in	20.1 in	7.5 in	16.7 in	12.4 in	37.0 in	81.5 in	37.0 in	734.0 lb
			61.0 cm	51.1 cm	19.1 cm	42.4 cm	31.4 cm	93.9 cm	207.0 cm	94.0 cm	333.0 kg
		4	24.0 in	22.6 in	7.5 in	16.7 in	12.4 in	37.0 in	81.5 in	37.0 in	744.0 lb
			61.0 cm	57.5 cm	19.1 cm	42.4 cm	31.4 cm	93.9 cm	207.0 cm	94.0 cm	338.0 kg
		6	24.0 in	23.9 in	7.5 in	16.7 in	12.4 in	37.0 in	81.5 in	37.0 in	759.0 lb
			61.0 cm	60.7 cm	19.1 cm	42.4 cm	31.4 cm	93.9 cm	207.0 cm	94.0 cm	345.0 kg

Dimensions are approximations taken from base model and will vary according to options chosen and customer sizing requirements.

Filter Sizing Guidelines


Filter Assembly Sizing Guidelines


Effective filter sizing requires consideration of flow rate, viscosity (operating and cold start), fluid type and degree of filtration. When properly sized, bypass during cold start can be avoided/minimized and optimum element efficiency and life achieved. The filter assembly differential pressure values provided for sizing differ for each media code, and assume 32 cSt (150 SUS) viscosity and 0.86 fluid specific gravity. Use the following steps to calculate clean element assembly pressure drop.

Sizing recommendations to optimize performance and permit future flexibility

- To avoid or minimize bypass during cold start the actual assembly clean ΔP calculation should be repeated for start-up conditions if cold starts are frequent.
- Actual assembly clean ΔP should not exceed 10% of bypass ΔP gauge/indicator set point at normal operating viscosity.
- If suitable assembly size is approaching the upper limit
 of the recommended flow rate at the desired degree
 of filtration consider increasing the assembly to the
 next larger size if a finer degree of filtration might
 be preferred in the future. This practice allows the
 future flexibility to enhance fluid cleanliness without
 compromising clean ΔP or filter element life.
- Once a suitable filter assembly size is determined consider increasing the assembly to the next larger size to optimize filter element life and avoid bypass during cold start.
- When using water glycol or other specified synthetics, we recommend increasing the filter assembly by 1~2 sizes.

Step 1: Calculate ΔP coefficient for actual viscosity

Step 2: Calculate actual clean filter assembly ΔP at both operating and cold start viscosity

Actual Assembly = Clean ΔP	Flow Rate	X ΔP Coefficient (from Step 1)	X Assembly ΔP Factor (from sizing table)
----------------------------------	--------------	--------------------------------	--

LF(M) Specifications

Dimensions	See Installation Drawings on page 182-183 for model specific dimensions.												
Operating Temperature	Fluid Temperature 30°F to 225°F (0°C to 105°C)					-	Ambient Temperature -4°F to 140°F (-20C to 60C)						
Operating Pressure	150 psi (1	0 bar) stanc	lard, see Spe	litional pr	al pressure ratings.								
Element Collapse Rating	HP105 HP106 150 psi (10.3 bar) 150 psi (10.3 bar)						HP107 150 psi (10	3 bar)	HP8314 (All Codes) 150 psi (10.3 bar)				
Integral Bypass Setting	element bypass eleme				HP8314 (Code 82) – Integral bypass psid (3.4 bard) HP8314 (Code 82) – Integral housing bypass 25 psid (1.7 bard)				pass	HP8314 (Code 83) – Integral housing bypass 50 psid (3.4 bard)			
Materials of Construction		eel with ind 304/316 stai	ustrial coati inless steel	ng									
Media Description	M G8 Dualglass, our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication fluids. $\beta x_{[C]} \ge 4000$				e media th water	1	W Stainless st media βx _[C]		VTM β3 _[c] ≥ 4000 particulate, insoluble oxidation by-product and water removal media				
Replacement Elements To determine replacement elements, use corresponding Filter Element Part Number HP105L[Length Code] - [Media Selection Code HP106L[Length Code] - [Media Selection Code HP107L[Length Code] - [Media Selection Code] - [Media Sel					ion Code][Seal Code] HP105L36–6AB ion Code][Seal Code] HP106L18–10MV								
	82 HP8314L[Length Code] – [Media Selection Code][Seal Code] HP8									HP8314L1	HP8314L39–25WV HP8314L16–12MB HP8314L39–16ME–WS		
Fluid Compatibility	Petroleum and mineral based fluids, #2 diesel fuels (standard). For specified synthetics contact factory for compatibility with fluorocarbon seal option. For phosphate ester (P9) or skydrol fluid (S9) compatibility select fluid compatibility from special options.												
Filter Sizing ¹	Filter assembly clean element ΔP after actual viscosity correction should not exceed 10% of filter assembly bypass setting. See page 22 for filter assembly sizing guidelines & examples. For applications with extreme cold start condition contact Hy-Pro for sizing recommendations.												
ΔP Factors ¹	Model	Length	Units	Media VTM	05M	1M	3M	6L	10M	16M	25M	**W	
	LF	16/18 36/39	psid/gpm bard/lpm psid/gpm bard/lpm	0.0628 0.0011 0.0440 0.0008	0.0473 0.0009 0.0331 0.0006	0.0463 0.0008 0.0324 0.0006	0.0391 0.0007 0.0273 0.0005	0.0303 0.0006 0.0212 0.0004	0.0271 0.0005 0.0190 0.0003	0.0266 0.0005 0.0186 0.0003	0.0256 0.0005 0.0179 0.0003	0.0046 0.0001 0.0032 0.0001	
	LFM3	36/39	psid/gpm bard/lpm	0.0122 0.0002	0.0092 0.0002	0.0081	0.0055 0.0001	0.0051 0.0001	0.0045 0.0001	0.0041 0.0001	0.0035 0.0001	0.0029 0.0001	
	LFM4	36/39	psid/gpm bard/lpm	0.0091 0.0002	0.0069 0.0001	0.0067 0.0001	0.0048	0.0044	0.004 0.0001	0.0037 0.0001	0.0032 0.0001	0.0025 0.00005	
	Model	Length	Units	Media 1A	3A	6A	10A	16A	25A				
	LF	16/18	psid/gpm bard/lpm	0.0514 0.0009	0.0434 0.0008	0.0336 0.0006	0.0302 0.0005	0.0295 0.0005	0.0284 0.0005				
		36/39	psid/gpm bard/lpm	0.0360 0.0007	0.0304 0.0006	0.0235 0.0004	0.0211 0.0004	0.0207 0.0004	0.0199 0.0004				
	LFM3	36/39	psid/gpm bard/lpm	0.0007 0.0001	0.0049 0.0001	0.0046 0.0001	0.0040 0.0001	0.0037 0.0001	0.0004 0.0001				
	LFM4	36/39	psid/gpm bard/lpm	0.0060 0.0001	0.0043 0.0001	0.0040 0.0001	0.0036 0.0001	0.0033 0.0001	0.0029 0.0001				

LF(M) Part Number Builder

LF						_	_	
	Series	Connection	Flement Type	Flement Length	AP Indicator	Special Options	Media	Seal

Series	Nun	nber of Elements	Max Flo	ow Rate		
Series	omit M3 M4 M9 M14 M22	1 element 3 elements 4 elements 9 elements 14 elements 22 elements 38 elements	200 gpm 600 gpm 800 gpm 1800 gpr 2800 gpr 4400 gpr	(757 lpm) ¹ (2271 lpm) ¹ (3028 lpm) ¹ n (6814 lpm) ¹ n (10,600 lpm) ¹ n (16,656 lpm) ¹ n (28,769 lpm) ¹		
Connection	A2 A3 A4 A6 A8*	2" ANSI flange – 150# sta 3" ANSI flange – 150# sta 4" ANSI flange – 150# sta 6" ANSI flange – 150# sta 8" ANSI flange – 150# sta 10" ANSI flange – 150# sta 10" ANSI flange – PN16 DN80 DIN flange – PN16 DN100 DIN flange – PN16 DN150 DIN flange – PN16	ndard ndard ndard ndard ndard andard standard standard	r r	D8* D10* F2' F3' G2 G3 N2 N3 N4 S2*	DN200 DIN flange – PN16 standard DN250 DIN flange – PN16 standard 2" Code 61 flange 3" Code 61 flange 2" G thread (BSPP) 3" G thread (BSPP) 2" NPT 3" NPT 4" NPT 2" SAE threaded O-ring boss
Element Type	5 6 7	HP105 – no bypass HP106 – 25 psid (1.7 bard HP107 – 50 psid (3.4 bard	, 0	, i	8X 82 85	HP8314 – no bypass HP8314 – 25 psid (1.7 bard) integral housing bypass HP8314 – 50 psid (3.4 bard) integral housing bypass
Element Length	18 ³ 36 ³	L18 single length filter ho L36 single length filter ho	_		16 ³ 39 ³	L16 single length filter housing and coreless element L39 single length filter housing and coreless element
ΔP Indicator	D E F G	22 psid visual gauge + ele 22 psid visual gauge 45 psid visual gauge + ele 45 psid visual gauge			H J P X	65 psid visual gauge + electric switch (elements 5 or 8X only) 65 psid visual gauge (elements 5 or 8X only) 2 pressure gages (industrial liquid filled) None (ports plugged)
Special Options	omit F G P9 ⁴ S1 ⁵ S2 ⁵ S3 ⁵	150 psi (10.3 bar) max op Filter element ΔP gauge v Spill retention pan with for Phosphate ester fluid cor 150 psi (10.3 bar) max ope 250 psi (17.2 bar) max ope 450 psi (31.0 bar) max ope	vith tattle tale guides (indus mpatibility m er. pressure, 3 er. pressure, 3	e follower needle strial coated steel) odification 04 stainless steel 04 stainless steel		1000 psi (68.9 bar) max oper. pressure, 304 stainless steel Skydrol fluid compatibility modification U Code (ASME U code certified) Automatic air bleed valve 250 psi (17.2 bar) max oper. pressure, carbon steel 450 psi (31.0 bar) max oper. pressure, carbon steel
Media Selection	05M 1M 3M 6L 10M ⁷	$β0.9_{[C]} ≥ 4000$ $β3_{[C]} ≥ 4000$ $β5_{[C]} ≥ 4000$ $β7_{[C]} ≥ 4000$ $β7_{[C]} ≥ 4000$ $β17_{[C]} ≥ 4000$ $β22_{[C]} ≥ 4000$	G8 [1A 3A 6A 10A ⁷ 16A 25A	Dualglass + water $β3_{[c]} \ge 4000$ $β5_{[c]} \ge 4000$ $β7_{[c]} \ge 4000$ $β12_{[c]} \ge 4000$ $β16_{[c]} \ge 4000$ $β22_{[c]} \ge 4000$	er ren	Stainless wire mesh 25W 25μ nominal 40W 40μ nominal 74W 74μ nominal 149W 149μ nominal
		710 8 β3 _[C] ≥ 4000 particulat	e, insoluble o	oxidation by-produ	ıct and	d water removal media
Seals	B V	Nitrile (Buna) Fluorocarbon				

Maximum recommended flow rate based on velocity through port and internal flow path. Consult sizing guidelines or consult factory for sizing based on flow rate, viscosity, temperature, filter media selection. Code 61 flange and SAE connection options include all other ports with SAE connections. When selected, no NPT connections are present in the assembly. Compatibility will be based on Element Type selection. For elements HP105, HP106, and HP107, use Length Code 18 or 36. Length Codes 16 and 39 only compatible with HP8314 element.

When selected, must be paired with Seal option "V." Contact factory for more information or assistance in fluid compatibility.

Lid closure hardware is plated carbon steel.

When selected, must be paired with Seal option "E-WS." Contact factory for more information or assistance in fluid compatibility.

E-WS EPR seals + stainless steel support mesh

For elements HP8314, use 12M or 12A for respective media code in place of 10M or 10A.

Only available on HP107 series elements. Max recommended flow rate 16 gpm (60 lpm) for HP107L36-VTM710* elements and 8 gpm (30 lpm) for HP107L18-VTM710* elements. Not available in single element configurations.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

Filtration starts with the filter.

Lower ISO Codes: Lower Total Cost of Ownership Hy-Pro filter elements deliver lower operating ISO Codes so you know your fluids are always clean, meaning lower total cost of ownership and reducing element consumption, downtime, repairs, and efficiency losses.

DFE Rated Filter Elements DFE is Hy-Pro's proprietary testing process which extends ISO 16889 Multi Pass testing to include real world, dynamic conditions and ensures that our filter elements excel in your most demanding hydraulic and lube applications.

Upgrade Your Filtration Keeping fluids clean results in big reliability gains and upgrading to Hy-Pro filter elements is the first step to clean oil and improved efficiency.

Advanced Media Options DFE glass media maintaining efficiency to $\beta3_{[c]} > 4000$, Dualglass + water removal media to remove free and emulsified water, stainless wire mesh for coarse filtration applications, and Dynafuzz stainless fiber media for EHC and aerospace applications.

Delivery in days, not weeks From a massive inventory of ready-to-ship filter elements to flexible manufacturing processes, Hy-Pro is equipped for incredibly fast response time to ensure you get your filter elements and protect your uptime.

More than just filtration Purchasing Hy-Pro filter elements means you not only get the best filters, you also get the unrivaled support, training, knowledge and expertise of the Hy-Pro team working shoulder-to-shoulder with you to eliminate fluid contamination.

Want to find out more? Get in touch.

hyprofiltration.com info@hyprofiltration.com +1 317 849 3535

